

Learning Engineering: What we know, What we can do

Bror Saxberg Founder

February 1, 2023

Learning engineering helps increase the odds of learning success

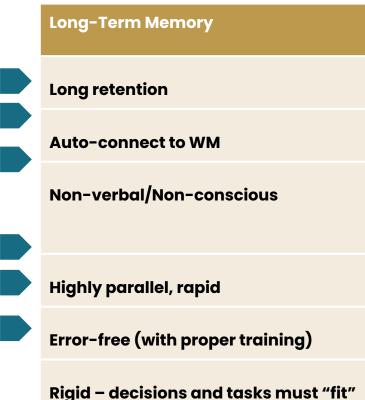
- A lot is known about learning and motivation from careful work over decades
- "Learning engineering" is the application of insights from learning sciences to real-world problems at scale
- When applied well, it can make a difference
- So let's do that!

Insights we have from learning science

- An important model for human expertise
- Equally important insights about motivation
- Resulting guidelines for instruction

We know a lot about how cognitive expertise works

Audio & visual inputs



Working MemoryShort retentionAudio + video = benefitsVerbal/conscious
Only 3-5 things at once
(prone to too much cognitive load)

Slow processing

Error-prone

Highly flexible - can generate new insights/knowledge

Much expertise is no longer verbally accessible to experts

- Less than 30% is verbally accessible
- Explains why learners find much "expert-created" learning/training does not prepare them for realworld work
- Techniques like cognitive task analysis (CTA) get at more of expertise
- Rarely used in learning environments

We also know quite a lot about motivation

Motivation issues benefit from different treatments

Problems with:	E.g.:	Approaches to resolve
Value	"I don't see the point"	Help learner find value Let learner use their existing expertise Make the activity itself be enjoyable
Self-efficacy	"I can't do this"	Show they have done things like this before Show stories from others like them who've mastered this before
Attribution	" <something> is in my way"</something>	Problem-solve around the issue (Space? Time? Materials not working? Etc.) Show stories from others like them with this issue who've found a solution
Emotional state	"I'm <angry <br="" depressed="">scared/grieving>"</angry>	Wide array of possible solutions, from structured conversation techniques through more professional help

Impact of applying these insights at scale

- Deeper understanding of expertise should help us prepare learners
- Improve instructional method choices
- Improve overall outcomes for learners
- Improve tools for teachers/trainers

Much expertise is no longer verbally accessible to experts

- Less than 30% is verbally accessible
- Explains why learners find much "expert-created" learning/training does not prepare them for real-world work
- Techniques like cognitive task analysis (CTA) get at more of expertise
- Rarely used in learning environments

It requires work to unpack more of expertise: Cognitive Task Analysis (CTA)

Expert performance 100% **Expertise remaining to** be discovered What can be 50% discovered by CTA 30% What experts teach

CTA is based on structured interviews with top experts identified with data, not opinion.

Interviews identify key decisions and tasks and then the steps behind these.

These interviews are refined to a "gold standard" and used to drive instruction.

CTA separates tools, knowledge, and context Paralegal example

Tool skills

- Critical thinking skills
- Organizational skills
 - General organizational skills
 - Litigation
 - Corporate
- General communication skills
- Legal research skills
- Legal writing skills
 - Litigation
 - Corporate
 - Criminal
- Computer skills

Prior knowledge

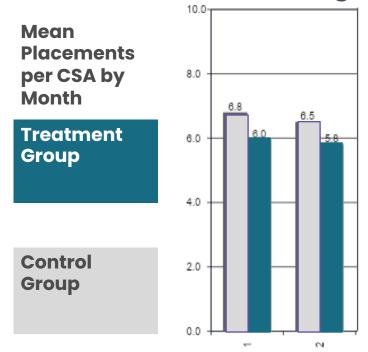
- History of Jurisprudence; overview of the US Constitution; the US court system
- Contract Law
- Tort Law
- Property Law
- Civil Litigation
- Criminal Law

Context analysis

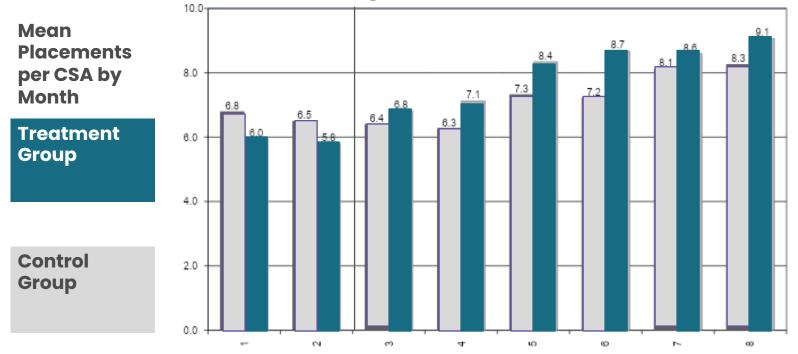
- Clear layout of work setting and surrounding activities to trigger paralegal skills in the right sequence
- Sequences of tasks, and steps within tasks, for different contexts

CTA identifies expertise missing in typical programs

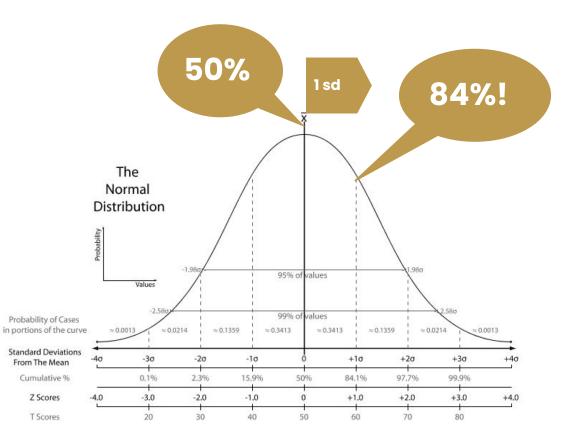
Paralegal example:


Only 4 of 13 critical paralegal tasks typically taught

CTA Expert Identified Activities	Modules in Paralegal Curriculum		
Intake interview	Unit 1: Justin King Case Unit 2: Pre-Complaint Investigation		
Identify conflicts	NOT TAUGHT		
Determine & comply pre- litigation notices or demands	NOT TAUGHT		
Draft & file a complaint	Unit 3: Drafting the Complaint Unit 4: Pre-Answer Investigation Unit 5: Pre-Complaint Investigation		
Motion/Pleadings	NOT TAUGHT		
Discovery	Unit 6: Discovery I Unit 7: Discovery II		
Pre-trial	Unit 8: Pre-trial Motions & Settlements Unit 9: Getting Ready for Trial		
Trial	NOT TAUGHT		
Post-trial	NOT TAUGHT		
Settlement	NOT TAUGHT		
Appellate filings & hearings	NOT TAUGHT		
Technology Tools: e-Discovery	NOT TAUGHT		
Technology Tools: Litigation Tools	NOT TAUGHT		


When training parallels what experts actually do, it matters Example - Impact of CTA on college career placement work: Before CTA-based training...

When training parallels what experts actually do, it matters Example - Impact of CTA on college career placement work: And after CTA-based training


Research offers specific guidance to lower cognitive load

Principle	Description	
Multimedia	Use relevant graphics and text to communicate content	
Contiguity	Integrate the text nearby the graphics on the screen – avoid covering or separating integrated information	
Coherence	Avoid irrelevant graphics, stories, videos, media, and lengthy text	
Modality	Include audio narration where possible to explain graphic presentation	
Redundancy	cy Do not present words as both on-screen text and narration when graphics are present	
Personalization	Script audio in a conversational style using first and second person	
Segmenting	Break content down into small topic chunks that can be accessed at the learner's preferred rate	
Pre-training	-training Teach important concepts and facts prior to procedures or processes	
Etc.	tc. Worked examples, self-explanation questions, varied-context examples and comparisons, etc.	

Source: E-learning and the Science of Instruction, Clark and Mayer, 4th ed., 2016

The impact is not small!!

Research offers specific guidance to lower cognitive load

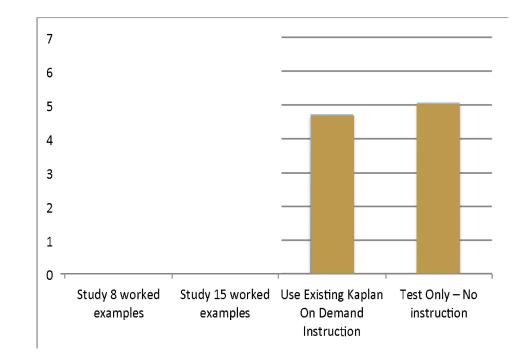
Principle	Description	
Multimedia	Use relevant graphics and text to communicate content	
Contiguity	Integrate the text nearby the graphics on the screen – avoid covering or separating integrated information	
Coherence	Avoid irrelevant graphics, stories, videos, media, and lengthy text	
Modality	Include audio narration where possible to explain graphic presentation	
Redundancy	cy Do not present words as both on-screen text and narration when graphics are present	
Personalization	Script audio in a conversational style using first and second person	
Segmenting	Break content down into small topic chunks that can be accessed at the learner's preferred rate	
Pre-training	-training Teach important concepts and facts prior to procedures or processes	
Etc.	tc. Worked examples, self-explanation questions, varied-context examples and comparisons, etc.	

Source: E-learning and the Science of Instruction, Clark and Mayer, 4th ed., 2016

Evidence-based guidelines start from how expertise gets acquired

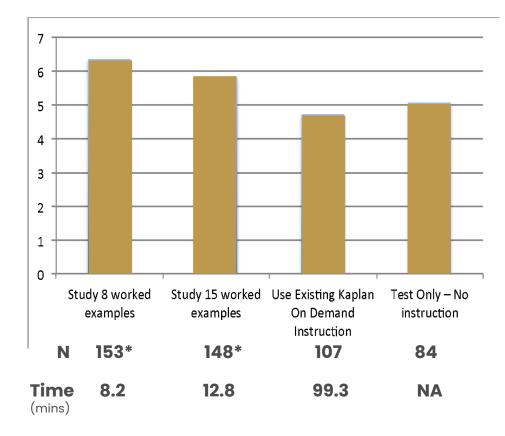
Stage	Implications for Instructional Design
Declarative	Clear information displays, e.g., job aids, examples, reference material
Procedural	Build varied Practice tasks, and rich feedback/coaching
Automated	Repeated frequent practice to build speed and accuracy

Research gives us guides to help with hard outcomes


	nowledge omponent Practice/Assessment		
Procedure		Decide when to use; perform the steps	
	Fact	Recall fact in task context; spaced repetition	
Supportive Knowledge	Concept	Classify, identify or generate examples and non-examples	
	Process	Identify causes of faults in a process; predict events in a process	
	Principle	Decide if principle applies; predict an effect; apply principle to solve a problem, explain a phenomenon or make a decision	

Evidence shows our intuitions aren't the best guides

LSAT Logical Reasoning example

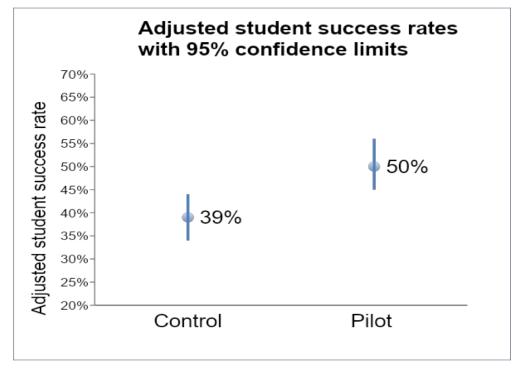


Evidence shows our intuitions aren't the best guides

LSAT Logical Reasoning example

* Significant difference from "No Instruction"

More use of learning science principles does helpExisting coursesRedesigned courses

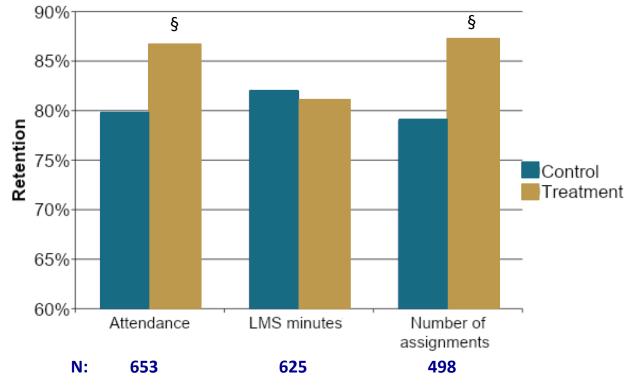

Read, Write, Discuss

- Outcomes and content not precisely aligned
- Limited demonstrations, worked examples, and practice
- General assessment rubrics
- High reliance on discussion boards

Prepare, Practice, Perform

- Outcomes and content aligned
- One lesson per objective
- Demonstrations and worked examples
- Practice, feedback before assessment
- Detailed scoring guides
- Less discussion/more practice
- Standard instructor materials
- Monitoring and support for motivation

Result: much greater student success


Wald Chi-Square: 10.42, df=1, n=895, Sig<.001.

- 11% higher success rate
- 28% increase

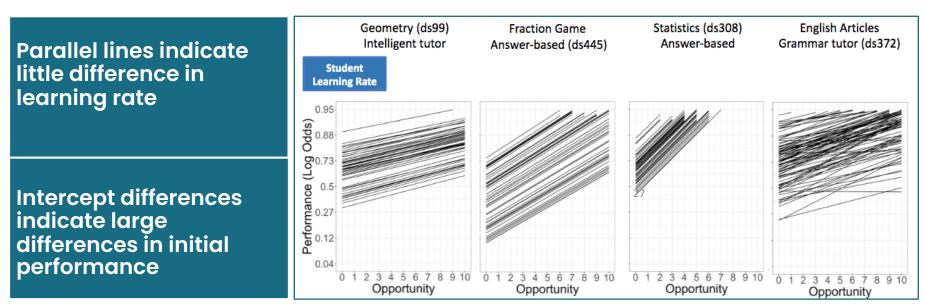
 Students in redesigned courses were **1.6** times more likely to be successful

We also need to check the tools we give to teachers/trainers Impact of faculty dashboards on first year college social studies course

§ Improved retention
* Improved learning outcomes

Lessons from CMU

- Work by Ken Koedinger's team
- Drawing on large real-world course data sets in DataShop
- Shows a remarkable regularity!



Selected CMU Datashop datasets have validated knowledge component models

- Different courses, with many students going through them
- Courses were improved over time - knowledge components (KCs) wellmodeled and validated

Dataset	Domain	Approx Grade Level*	Stu	Observations	#KC Models	KCs
ds115	Chinese	College	72	19,008	4	248
ds1387	Math/Other	Upper Elem	84	4,032	3	34
ds445	Fraction number line	Upper Elem	51	4,327	22	21
ds1980	English articles	Adult	120	6,592	25	16
ds394	English articles	Adult	97	5,773	12	13
ds1935	STEM	College	41	8,631	9	18
ds308	College Statistics	College	52	4,152	9	9
ds392	Geometry	Middle	123	41,756	8	38
ds1899	Math	Middle	302	4,930	9	6
ds372	English articles	Adult	99	7,128	16	19
ds99	Geometry	High	95	17,469	20	41
ds567	Fractions	Upper Elem	59	48,501	21	236
ds565	Fractions	Upper Elem	61	57,948	7	78
ds1007	Math/Other	Adult	49	5,063	9	4
ds447	Language	College	161	92,067	4	46
ds271	Math	Middle	69	1,103	5	6
ds563	Fractions	Upper Elem	64	55,407	17	54
ds253	Geometry	High	41	14,875	17	22
ds4555	Algebra	High	129	32,125	3	26
ds1943	Geometry	Middle	218	136,354	4	64
ds531	Language	College	77	117,297	5	68
ds562	Fractions	Upper Elem	63	48,739	21	102
ds566	Fractions	Upper Elem	58	64,025	9	60
ds406	Computer Science	College	765	441,643	5	74
ds564	Fractions	Upper Elem	73	66,728	9	65
ds1330	Algebra	Middle	3819	39,369	4	24
ds104	Physics	College	104	6,069	6	13

Within such courses, very little student-tostudent learning rate variation. Only difference is where they started from!

Source: Koedinger, K. R., Carvalho, P., Liu, R., & McLaughlin, E. A. (2023). An Astonishing Regularity in Student Learning Rate. (https://psyarxiv.com/pxsfh/download?format=pdf)

High levels can be reached by all learners, given access to welldesigned instruction and motivation for enough practice opportunities!

Thank You

Bror Saxberg Founder

<u>brorsaxberg@</u>learningforge.net

+17032977511

1534 Twinridge Road, Santa Barbara CA 93111